
Reviewer Report

Title: An Analysis of Security Vulnerabilities in Container Images for Scientific Data Analysis

Version: Original Submission Date: 11/30/2020

Reviewer name: Yaroslav Halchenko

Reviewer Comments to Author:

* Review summary

 This paper presents a little study of selected set of popular

 containerized applications (BIDS-Apps, Boutiques) regarding the

 number of known vulnerabilities found to be present in the contained

 within containers software components. Two approaches to reduce

 number of known/detected vulnerabilities were approached: container

 updates and/or minimization. Overall it is a nice and informative

 paper. I only have once notable concern: recommendation "ii. Use

 lightweight base images such as Alpine Linux" . As described in

 greater detail below, I think at large it would only potentially

 only "hide" the problem away by making vulnerabilities undetected

 (but not "not present").

* Abstract

** ", [especially] on high-performance computing clusters (HPC)".

 Since the statement is IMHO applicable in general, not only to HPC.

 Similar statement in Introduction opening.

 I could even argue that taking "possession" over a local desktop

 could provide an attack vector enabling intruder to access multiple

 HPC systems a user might have access to.

 So I would not "limit" to HPC alone, but rather add a statement that

 such vulnerabilities might affect HPC deployments at a larger scale,

 while circumventing/obliterating security measures system

 administrators put in place.

* Introduction

** "and [often can] control the memory, CPU, network and file-system resources"

 Since AFIAK Singularity by default would not bother to control

 memory/CPU/network or even file resources. That was the point

 behind it: to be (unlike Docker) very transparent to the process and

 as close to the "chroot" lightweight as possible.

* "for Docker and appc container"

 may be that originally used version promoted support for appc, but

 as appc specification was stopped to be developed in favor of OCI,

 Clair now states support for OCI (not appc). So it might be better

 to say "Docker and OCI container images"

* "give scanning results" -> "list scanning results"

 minor, and I do not like "list" either but have not come up with a

 better alternative

* "In comparison, no vulnerabilities were found in base Docker images ubuntu:20.04 and centos:7 after

package update. "

 That it IMHO would be inappropriate comparison to make: non-updated

 applications images to updated stock images. Why not to also

 provide a number of vulnerabilities in base images **BEFORE** the

 update? That would also deliver the point that even base images

 could have vulnerabilities.

 If no longer possible to do easily (no access to the original base

 images), just remove "In comparison,"?

* Figure 1 -- I cannot tell between "critical" and Ubuntu -- both are vivid red

 Since it has a (n) anyways, why just to make it that solid color

 which is for High ATM and adjust all the rest accordingly? would

 make figure more consistent IMHO

* "six of them could not be updated due to various issues with the package manager,"

 too vague. Most likely it was not an "issue" per se but a. base

 distribution is EOLed and APT lines had to be adjusted (was not

 done), or key expired (also could be worked around). I would have

 advised to rephrase with a bit more clearer statement on why they

 were not updated - as "update" is promoted as an effective way to

 address vulnerabilities, inability (or difficulty) to update is an

 important factor!

* Is minimization "useful" to address security issues?

 Please state and support your opinion, since IMHO minimization is of

 no direct effect since vulnerable minimized-away software packages

 (even though shipped within container) are not involved in the

 computation anyways. Describe how/when they could potentially be

 harmful (e.g. a user unintentionally triggers those packages

 execution, which should be unlikely if container user through its

 computational entry point).

 The coin could also be flipped: only a port of vulnerabilities would

 in the containers could be relevant to the computational workflow.

 Judging from Fig 1B it actually could be 25-100% (I suspect g was

 minified by its developers)

* Discussion

** i. Introduce software dependencies cautiously

 agree.

 you could provide immediate hints such as `--no-install-recommends`

 for `apt install` invocations.

 For this and the rest of the recommendations, I think readers would

 greatly benefit from addition of more specific references and

 examples, e.g. for "vi. Run image scanners during continuous

 integration" -- is there a project/container you could refer to as

 an example?

** ii. Use lightweight base images such as Alpine Linux.

 disagree, since it could also fire back.

 I hypothesize: The fact that you found less vulnerabilities on

 alpine-based images could be due to the fact that dependencies were

 manually built/installed (or some other distribution like conda was

 used) and thus such "custom" installations simply were not scanned

 by vulnerability scanners. "update" of such containers becomes

 infeasible.

 As a result you just end up just amplifying the problem:

 vulnerabilities cannot be detected (but exist), updates are not

 possible. Yes, such images would be "smaller", which will be good,

 but you are hiding the elephant with such suggestion.

 Similarly a statement in the conclusions should be adjusted, which

 ATM just recommends "using lightweight OS distributions".

** iii. Use OS releases with long-term support.

 You should note that "base OS" LTS or not support relates to only

 packages provided through the distribution. It provides no magical

 means for vulnerabilities fixup for scientific software installed

 manually or from additional repositories (like NeuroDebian,

 NeuroFedora, conda-forge, etc). BUT if scientific software components

 are built "properly", dynamically linking against distribution

 provided libraries, then updates of the base distribution would

 automagically address vulnerabilities within scientific components

 (which would not happen if they are either built statically embedding

 all the libraries, or just bundling them for distribution -- e.g. like

 standalone distributions of FSL, FreeSurfer etc would do).

 So, by itself, stable base is not a guarantee that container would

 be "safer" after update. Scientific components should ideally be

 integrated within the distribution itself. The follow up

 "iv. Install packages, not files" is a good one, but IMHO text here

 should be a bit more explicit on aforementioned aspect.

 It could also "link" into that aspect of "could not be updated due

 to various issues with the package manager," -- how many of those

 were not based on LTS of some kind?

*** "and Debian stable releases are maintained for 3 years"

 There is Debian LTS support, after "stable release support", which

 is provided for at least 5 years: https://wiki.debian.org/LTS

** "v. Minify container images. "

 and explicitly 'link' to i. on cautious introduction of

 dependencies? might even better be reordered so those two advises

 come close.

Level of Interest

Please indicate how interesting you found the manuscript: Choose an item.

Quality of Written English

Please indicate the quality of language in the manuscript: Choose an item.

Declaration of Competing Interests

Please complete a declaration of competing interests, considering the following questions:

 Have you in the past five years received reimbursements, fees, funding, or salary from an

organisation that may in any way gain or lose financially from the publication of this manuscript,

either now or in the future?

 Do you hold any stocks or shares in an organisation that may in any way gain or lose financially

from the publication of this manuscript, either now or in the future?

 Do you hold or are you currently applying for any patents relating to the content of the

manuscript?

 Have you received reimbursements, fees, funding, or salary from an organization that holds or

has applied for patents relating to the content of the manuscript?

 Do you have any other financial competing interests?

 Do you have any non-financial competing interests in relation to this paper?

If you can answer no to all of the above, write 'I declare that I have no competing interests' below. If

your reply is yes to any, please give details below.

I declare that I have no competing interests

I agree to the open peer review policy of the journal. I understand that my name will be included on my

report to the authors and, if the manuscript is accepted for publication, my named report including any

attachments I upload will be posted on the website along with the authors' responses. I agree for my

report to be made available under an Open Access Creative Commons CC-BY license

(http://creativecommons.org/licenses/by/4.0/). I understand that any comments which I do not wish to

be included in my named report can be included as confidential comments to the editors, which will not

be published.

Choose an item.

To further support our reviewers, we have joined with Publons, where you can gain additional credit to

further highlight your hard work (see: https://publons.com/journal/530/gigascience). On publication of

this paper, your review will be automatically added to Publons, you can then choose whether or not to

claim your Publons credit. I understand this statement.

Yes Choose an item.

